Search results for "TELEPORTATION NETWORK"
showing 7 items of 7 documents
Coexistence of unlimited bipartite and genuine multipartite entanglement: Promiscuous quantum correlations arising from discrete to continuous-variab…
2006
Quantum mechanics imposes 'monogamy' constraints on the sharing of entanglement. We show that, despite these limitations, entanglement can be fully 'promiscuous', i.e. simultaneously present in unlimited two-body and many-body forms in states living in an infinite-dimensional Hilbert space. Monogamy just bounds the divergence rate of the various entanglement contributions. This is demonstrated in simple families of N-mode (N >= 4) Gaussian states of light fields or atomic ensembles, which therefore enable infinitely more freedom in the distribution of information, as opposed to systems of individual qubits. Such a finding is of importance for the quantification, understanding and potenti…
Entanglement in continuous-variable systems: recent advances and current perspectives
2007
We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures, and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillabil…
Genuine multipartite entanglement of symmmetric Gaussian states: Strong monogamy, unitary localization, scaling behavior, and molecular sharing struc…
2008
We investigate the structural aspects of genuine multipartite entanglement in Gaussian states of continuous variable systems. Generalizing the results of [Adesso & Illuminati, Phys. Rev. Lett. 99, 150501 (2007)], we analyze whether the entanglement shared by blocks of modes distributes according to a strong monogamy law. This property, once established, allows to quantify genuine N-partite entanglement in terms of the "residual contangle" not encoded into 2,...,K,...,(N-1)-partite quantum correlations. The explicit expression of this entanglement measure is derived, by a recursive formula, for a subclass of Gaussian states. These are fully symmetric (permutation-invariant) states multi-…
Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems
2004
For continuous-variable systems, we introduce a measure of entanglement, the continuous variable tangle ({\em contangle}), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three--mode Gaussian states, and in all fully symmetric $N$--mode Gaussian states, for arbitrary $N$. For three--mode pure states we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We …
Optical state engineering, quantum communication, and robustness of entanglement promiscuity in three-mode Gaussian states
2006
We present a novel, detailed study on the usefulness of three-mode Gaussian states states for realistic processing of continuous-variable quantum information, with a particular emphasis on the possibilities opened up by their genuine tripartite entanglement. We describe practical schemes to engineer several classes of pure and mixed three-mode states that stand out for their informational and/or entanglement properties. In particular, we introduce a simple procedure -- based on passive optical elements -- to produce pure three-mode Gaussian states with {\em arbitrary} entanglement structure (upon availability of an initial two-mode squeezed state). We analyze in depth the properties of dist…
Multipartite entanglement in three-mode Gaussian states of continuous variable systems: Quantification, sharing structure and decoherence
2005
We present a complete analysis of multipartite entanglement of three-mode Gaussian states of continuous variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations will be quantified by a proper convex roof extension of the squared logarithmic negativity (the contangle), satisfying a monogamy relation for multimode Gaussian states, whose proof will be reviewed and elucidated. The residual contangle, emerging from the monog…
Standard forms and entanglement engineering of multimode Gaussian states under local operations
2007
We investigate the action of local unitary operations on multimode (pure or mixed) Gaussian states and single out the minimal number of locally invariant parametres which completely characterise the covariance matrix of such states. For pure Gaussian states, central resources for continuous-variable quantum information, we investigate separately the parametre reduction due to the additional constraint of global purity, and the one following by the local-unitary freedom. Counting arguments and insights from the phase-space Schmidt decomposition and in general from the framework of symplectic analysis, accompany our description of the standard form of pure n-mode Gaussian states. In particula…